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Abstract
Altered energy metabolism is now recognized as a driver in many diseases. In 
cancer research, significant advances have been made in defining druggable 
targets, with metabolic intermediates emerging as promising therapeutic targets. 
Agilent Seahorse XF technology provides critical functional measurements in live 
cells to identify potential druggable gene and protein targets, and to validate their 
role in cancer cell proliferation, adaptation, and survival. By measuring bioenergetic 
phenotype, cellular ATP production rate, and mitochondrial and glycolytic function, 
metabolic vulnerabilities in cancer cells can be revealed to advance cancer 
therapeutics.

Targeting Energy Metabolism for 
Cancer Therapeutic Discovery using 
Agilent Seahorse XF Technology 
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Introduction
Background: Advancing opportunities in cancer drug 
therapies
Cancer cell proliferation is a dynamic process that demands 
significant raw materials and energy. Conventional views 
have commonly inferred that cancer cells rely on upregulated 
glycolysis for their proliferation requirements, often character-
ized as the Warburg effect 1, 2. However, with advancements 
in metabolic analysis techniques, it is now clear that some 
cancer cells preferentially utilize mitochondrial respiration 
for unregulated proliferation and survival, often in concert 
with downregulated glycolysis 3, 4, 5. Therefore, there has been 
a recent paradigm shift towards understanding that cancer 
metabolic dependencies are not only variable across cancer 
subsets, but that they can also be measured to reveal cancer 
cell liabilities 6, 7. Once identified and validated, these metabol-
ic-pathway liabilities can be exploited for therapeutic targeting 
8. Promising druggable targets for cancer metabolic therapies 
include oncogenes that rewire energy metabolism, interme-
diates in oncogene pathways, and the genes, proteins, and 
pathways associated with substrate and nutrient transport 
and utilization/oxidation.

A paradigm shift: Heterogeneity in metabolic phenotype 
driving oncogenesis
Cancer cells undergo various metabolic changes as they 
acquire altered traits to adapt, survive, and metastasize in 
environments with varying substrate availability and oxygen 
concentration 9. As a result, they display profound genetic, 
bioenergetic, and functional differences from their nontrans-
formed parental cells. In the last decade, bioenergetic studies 
have highlighted the variability among cancer types, and even 
within cancer types, in the mechanisms and the substrates 
preferentially used for deriving this vital energy. While glycoly-
sis (or Warburg metabolism) has long been considered the 
major metabolic process for energy production and anabolic 
growth in cancer cells, it is now clear that mitochondria play 
a key role in oncogenesis 10. In addition to central metabolic 
and bioenergetic function, mitochondria also provide build-
ing blocks for tumor anabolism, as well as controlling redox 
and calcium homeostasis 6. Although a main tenet of cancer 
is dysregulation of normal cell metabolism that contributes 
to abnormal cell growth, cancer is not one disease. Thus, 
understanding how the metabolic pathways of a given type of 
cancer are rewired is critical to identify and develop opportuni-
ties for therapeutic intervention.  

Defining metabolic/bioenergetic 
phenotype
An initial step in understanding any type of cancer is to char-
acterize the metabolic and bioenergetic signature of the cell. 
The Oxygen Consumption Rate (OCR)/Extracellular Acidifica-
tion Rate (ECAR) ratio and Agilent Seahorse XF Cell Energy 
Phenotype Test (described in detail in Rogers et al, 2019 11) 
provide a high-level assessment of bioenergetic poise. Lan-
ning et al. used this assay to show that triple-negative breast 
cancer (TNBC)-derived cell lines displayed significant hetero-
geneity with respect to basal metabolic phenotype (Figure 1) 
12. In a similar study, Guha et al. profiled the basal metabolic 
signatures of several breast cancer cell lines (Figure 2). Here, 
the authors showed that aggressive TNBC cells have a unique 
metabolic phenotype associated with mitochondrial genetic 
and functional defects 13. These oncogenic defects impaired 
mitochondrial respiration and induced a metabolic switch 
to glycolysis, which is associated with tumorigenicity. These 
results suggest that metabolic phenotype could be used to 
identify TNBC patients at risk of metastasis and that altered 
metabolism can be targeted to improve chemotherapeutic 
response. 

Based on OCR and ECAR XF measurements, a more function-
al and quantitative measure of the bioenergetic phenotype is 
to quantify the rate and source (mitochondrial versus glyco-
lytic) of ATP production. The Agilent Seahorse XF Real-Time 
ATP rate assay measures the total ATP production rate in 
cells and distinguishes between ATP produced from mito-
chondrial oxidative phosphorylation (OXPHOS) and glycolysis 
(Figure 3 and 14). When applied to a panel of cancer cell lines, 
this assay shows that cancer cell lines utilize mitochondrial 
OXPHOS and glycolytic activities differently to meet their 
energy demands (Figure 4 and 15). These findings underscore 
the fact that different cancer cells adopt unique metabolic 
signatures that are critical to setting the strategy for targeting 
a given disease subtype and determining whether a given cell 
line is a good model for the disease of interest.
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Figure 1. Agilent Seahorse XF energy map of breast cancer cell lines 
reveals different metabolic phenotypes. Normalized ECAR and OCR data 
were plotted to reveal overall relative basal metabolic profiles for each cell 
model 12.

Figure 2. TNBC and non-TNBC cell lines display distinct metabolic 
phenotypes. Top: Basal cellular oxygen consumption rate (OCR) of TNBC- 
and non-TBNC cell lines. Bottom: XF energy map of TNBC and non-TNBC cell 
lines 13.

Figure 3. Representative scheme of the Agilent Seahorse XF Real-Time 
ATP rate assay. This assay provides quantitative measurements of ATP 
production rate from both mitochondrial and glycolytic pathways. Both 
OCR and ECAR of live cells are simultaneously measured using the Agilent 
Seahorse XF Analyzer. Using standardized control compound injections and 
data analysis, cellular ATP production rates are reported 14.

Figure 4. Cancer cells have developed different strategies for cellular 
energy production, with significant implications for therapeutic strategy. 
Measuring ATP production rates across a panel of 20 cancer cell lines 
reveals a wide range of energy phenotypes, from predominantly oxidative 
(top) to predominantly glycolytic (bottom) 15.
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Modulating cancer cell energy metabolism
XF Cell Mito Stress Test, Wang et al. demonstrated dose-de-
pendent decreases in basal and maximal respiration for both 
SGC-7901 and MGC-803 cells, both indicative of mitochon-
drial dysfunction (Figure 6). Using the Agilent Seahorse XF 
Glycolytic Rate Assay to provide a quantifiable measurement 
of glycolysis (Figure 7 17), the authors also showed a dose-de-
pendent increase in basal glycolysis in both cell types (Figure 
8). This data supports the observation of cellular ATP produc-
tion switching predominantly to glycolysis, but at a lower total 
production rate. These results, with orthogonal data, suggest 
that mitochondrial function may be an effective target for 
anticancer drug development efforts 16.  

Figure 6. Dose-dependency of the effect of γ-T3 on mitochondrial function 
is measured by the Agilent Seahorse XF Cell Mito Stress Test. SGC-7901 
and MGC-803 cells were treated with indicated concentrations of γ-T3 for 4 
h, then basal and maximal OCR were measured using the XF Cell Mito Stress 
Test 16. 

Figure 7. Representative scheme for the Agilent Seahorse XF Glycolytic 
Rate Assay. This assay provides a quantitative measure of glycolysis using 
both OCR and ECAR (simultaneously measured by the Agilent Seahorse XF 
Analyzer) to measure and subtract mitochondrial acidification. The resulting 
glycolytic Proton Efflux Rate (glycoPER) under both basal and compensatory 
conditions are reported 17.

Figure 8. Dose-dependency of the effect of γ-T3 on the glycolytic rate is 
measured by the Agilent Seahorse XF Glycolytic Rate Assay. SGC-7901 
(top) and MGC-803 (bottom) cells were treated with indicated concentrations 
of γ-T3 for 4 h and the extracellular acidification rates were measured using 
the XF Glycolytic Rate Assay. Bar graphs show quantitative data of basal and 
compensatory glycolysis rates 16.

Figure 5. Quantification of ATP production rate reveals a drug-induced 
glycolytic switch in two adenocarcinoma cell lines. Gastric cancer cells 
were treated with 0 or 30 μM γ-T3 for 4 h, and the ATP production rate was 
measured using the Agilent Seahorse XF Real Time ATP rate assay. Adapted 
from 16.
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Measuring changes in cancer cell metabolism in response 
to potential therapeutic compounds is paramount for under-
standing drug mechanism of action, efficacy, toxicity, and 
off-target effects. When investigating effects of γ-Tocotrienol 
(γ-T3) on human gastric adenocarcinoma cells, Wang et al. 
observed a significant shift away from mitochondrial and 
towards glycolytic ATP production. Further, γ-T3 reduced the 
total ATP production rate in these cells (Figure 5) 16.  

Once a change in bioenergetic phenotype is detected, further 
investigation often involves uncovering the mechanism re-
sponsible for the shift in metabolic poise. Thus, to gain insight 
into observations presented in Figure 5, further assays were 
performed to directly assess mitochondrial and glycolytic 
function in the presence of γ-T3. Using the Agilent Seahorse 



5

Figure 9. KRAS-and EGFR-mutated NSCLC cells exhibit different ATP 
production patterns. Metabolic profiles of four cellular models of NSCLC 
in standard assay medium (XF RPMI containing 10 mM glucose, 1 mM 
pyruvate, 2 mM glutamine, pH 7.4) These two KRAS mutant cell lines are 
slightly more glycolytic than the EGFR mutant cell lines 18.

Figure 10. Measuring the functional effect of mitochondrial gene mutations using basal respiration and spare respiratory capacity. A) trace of OCR 
values from a mitochondrial stress test showing Kras-p53 (KP) -derived cell line (red) and Kras-p53-SMARCA4 -derived cell line (KPS , i.e. SMARCA4 
deficient, blue). B) basal respiration and spare respiratory capacity. C) kinetic trace of the mitochondrial stress test showing H1299 parental (i.e. 
SMARCA4 deficient, blue) and H1299 cell line reconstituted with SMARCA4 (red). D) basal respiration and spare respiratory capacity 19.

Mitochondrial and glycolytic function as therapeutic targets: the genotype-metabolic 
phenotype connection.
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Beyond initial classification of cancer cell energetic phe-
notypes, ATP production rates and the proportion of ATP 
sourced from OXPHOS versus glycolysis can be further used 
to investigate the functional effects of cancer-associated mu-
tations. For example, evaluation of KRAS-and EGFR-mutated 
NSCLC cells showed distinct metabolic phenotypes concern-
ing the source of ATP production (Figure 9 18). The cell lines 
bearing EGFR mutations were, in general, more oxidative than 
those bearing KRAS mutations, providing insight into meta-
bolic vulnerabilities of cancer subsets, and EGFR as a poten-
tial therapeutic target.

A study by Deribe et al. provides another example of how 
measurements with the XF Cell Mito Stress Test revealed 
mutations of well-known cancer-causing genes, which could 
serve as a target for metabolic modulation 19. In this study, 
the authors showed that mutations in the SWI/SNF chroma-
tin remodeling complex induce a targetable dependence on 
OXPHOS in lung cancer cell lines. Cells deficient in the most 
frequently inactivated complex subunit, SMARCA4 (KPS cells, 
Figure 10A, B), had increased mitochondrial respiration. When 

the SMARCA4 deficient H1299 lung cell line was reconstituted 
with SMARC4A (H1299 SMARCA4), both basal respiration 
and spare respiratory capacity decreased (Figure 10 C, D), fur-
ther showing that these mutant lung cancer cells are sensitive 
to inhibition of OXPHOS 19.
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The previous examples have discussed how XF measure-
ments and assays revealed metabolic vulnerabilities with 
upregulated OXPHOS. Similarly, metabolic vulnerabilities 
associated with upregulated glycolysis can be identified using 
In another example of oncogenes driving changes in meta-
bolic phenotype, Barnoud et al. recently demonstrated that 
tumor cells expressing a p53 allele with a serine at amino acid 
47 (S47 tumor cells) exhibited upregulated glycolysis with 
reduced dependency on OXPHOS compared to cell with wild 
type p53 20. This was accomplished by performing both XF 
Glycolytic Rate and XF Mito Stress Test assays to investigate 
glycolytic and mitochondrial function, respectively. Measure-
ment of mitochondrial function revealed decreased basal 

Figure 11. Metabolic changes in tumor cells induced by a p53 allele with a serine at amino acid 47 (S47 tumor cells). A) The Agilent Seahorse XF Cell Mito 
Stress Test reveals a decrease in basal mitochondrial respiration and spare respiratory capacity in S47 tumor cells compared to wild type cells. B, C, D) The 
Agilent Seahorse XF Glycolytic Rate Assay reveals a statistically significant difference in basal and compensatory glycolysis for S47 tumor cells compared to 
WT cells (Figure adapted from 20).
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and maximal (stressed) mitochondrial respiration of S47 
cells compared to wild type cells (Figure 11A), suggesting a 
decreased ability to perform OXPHOS. In contrast, measure-
ment of basal and compensatory glycolysis (Figure 11 B–D) 
showed that the S47 tumor cells were upregulating glycolysis 
under both basal and stressed conditions. This indicates that 
metabolic rewiring resulted in a greater dependency on gly-
colysis compared to the wild type. Taken together, the results 
suggest that in these tumor cells, the glycolytic pathway is 
a potential metabolic target for S47 variant cancers. This is 
further supported by experiments showing increased sensitiv-
ity of S47 cells to the glycolytic inhibitor, 2-deoxyglucose 20. 
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Summary
• To first understand changes in the bioenergetic poise be-

tween oxidative phosphorylation and glycolysis in cancer 
cells, it is recommended to measure the OCR/ECAR ratio. 
This metric is an easy-to-use indicator of changes in cell 
phenotype or metabolic activity. Assays that can be used 
to determine this ratio include the XF Cell Energy Pheno-
type Test, the XF Cell Mito Stress Test, and the XF Glyco-
lytic Rate Assay.

• A more functional and quantitative measure of cancer cell 
metabolic phenotype is to quantify the rate and source 
(mitochondrial versus glycolytic) of ATP production. The 
XF Real-Time ATP rate assay measures the total ATP pro-
duction rate in cells and distinguishes between ATP pro-
duced from mitochondrial OXPHOS versus glycolysis. This 
assay therefore provides a detailed, functional overview of 
cancer cell phenotype and metabolism.

• Used in combination the quantitative and functional 
parameters provided by the XF Real-Time ATP rate assay 
(total, glyco-, and mitoATP production rates), the XF Cell 
Mito Stress Test (basal and maximal OCR), and the XF 
Glycolytic Rate Assay (basal and compensatory glycolysis) 
can reveal the effects of anticancer agents in terms of 
metabolic liabilities, efficacy, toxicity, target identification, 
mechanism of action, etc. 

• There is increasing evidence for a correlative pattern 
among oncogenes (i.e. the expressed protein) and effects 
on cancer cell metabolism regarding changes in mitochon-
drial and glycolytic function and the ATP production rate/
source. These metabolic changes or shifts can be poten-
tial targets for anticancer therapeutics.    
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