

Monitoring Product Quality Attributes of Biotherapeutics at the Peptide Level Using the Agilent InfinityLab LC/MSD XT System

Authors

Linfeng Wu, Lisa Zang, and Guannan Li Agilent Technologies, Inc.

Abstract

Single quadrupole (SQ) LC/MS has been adopted in the biopharmaceutical QC labs for its low-cost, robustness, and simple operation. This Application Note describes a simple, generic method for routine biotherapeutic peptide map analysis using the Agilent InfinityLab liquid chromatography/mass selective detector XT (LC/MSD XT), an SQ system with an extended mass range up to *m/z* 3,000, in combination with an Agilent 1290 Infinity II LC System and Agilent OpenLab ChemStation software. Streamlined data processing and reporting were demonstrated for pre-identified peptides of a recombinant monoclonal antibody (mAb), including complementary-determining regions (CDR) peptides, deamidated peptides, oxidized peptides, and glycopeptides using OpenLab ChemStation. This study serves as a proof of concept for monitoring multiple product quality attributes (PQAs) using an SQ LC/MS system with software that is recommended for laboratories requiring regulatory compliance.

Introduction

In the biotherapeutic industry, optically based chromatographic methods have widely been used for quality control (QC). However, protein-based biotherapeutics are generally very complex, making an orthogonal detection method (for example, mass spectrometry) very attractive or necessary to assess product quality attributes at a molecular level. Therefore, SQ-based LC/MS has been adopted in the QC environment. Due to the product complexity, comprehensive analysis of protein-based therapeutics often requires running a panel of analytical methods. The concept of using a single LC/MS analytical method to monitor multiple PQAs has gained momentum in the biopharmaceutical industry. Therefore, it is valuable to develop an SQ-based LC/MS assay for monitoring multiple PQAs.

In the QC environment, an important need is to support regulatory compliance. OpenLab ChemStation in combination with central data storage (OpenLab ECM or OpenLAB Server) provides functionality that labs need to achieve compliance: controls for managing system access, audit trail, versioning of data, electronic signature, secured records and data archival.^{1,2}

This Application Note develops a simple, untargeted, generic LC/MS method for routine biotherapeutic peptide map analysis using the InfinityLab LC/MSD XT system, coupled with a 1290 Infinity II LC and OpenLab ChemStation software. In a stress study using NIST monoclonal antibody (NISTmAb), we demonstrate that this compliance-ready system allows streamlined data processing and reporting for multiple PQAs in a single analysis, such as product identification confirmation, post translation modification (PTM) analysis, and glycopeptide analysis.

Experimental

Materials

All reagents and solvents were LC/MS grade. The NISTmAb reference material was purchased from National Institute of Standards and Technology.

Sample preparation

To induce asparagine deamidation, NISTmAb was exposed to elevated temperature (37 °C) in a Tris-HCl buffer system at pH 8.7 for six days. To induce methionine oxidation, NISTmAb was incubated in Tris-HCl buffers containing 0.002% (v/v) oxidizing agent H_oO_o overnight at room temperature. Both reference and stress-induced NISTmAb were denatured, reduced, alkylated, and trypsin-digested followed by desalting using the Agilent AssayMAP Bravo platform.³ Digested samples were injected at a concentration of approximately $0.5 \,\mu g/\mu L$ onto the LC/MS system.

LC/MS analysis

LC separation was carried out using an Agilent 1290 Infinity II LC, consisting of an Agilent 1290 Infinity II High-Speed Pump (G7120A), an Agilent 1290 Infinity II Multisampler (G7167B) with sample cooler (option 100), and an Agilent 1290 Infinity II Multicolumn Thermostat (G7116B) with an Agilent ZORBAX 300StableBond C18 column (2.1 × 150 mm, 300 Å, 1.8 µm, p/n 863750-902) (Table 1). The MS system used was the Agilent InfinityLab LC/MSD XT system (G6135BA) with the Agilent Jet Stream source (G1958-65138). Agilent OpenLab ChemStation (version C 01.09) was used for data acquisition, processing, and reporting. The data were acquired in positive scan mode ranging from m/z 360 to 1,400 (Table 2).

	LC Parameters
Analytical Column	Agilent ZORBAX RRHD 300Å StableBond C18, 2.1 × 150 mm, 1.8 μm (p/n 863750-902)
Mobile Phase A	H_2^0 with 0.1% (v/v) formic acid
Mobile Phase B	Acetonitrile with 0.1% (v/v) formic acid
Flow Rate	0.25 mL/min
Injection Volume	5 μL
Gradient	Time (min) %B 0 1 5 1 6 10 70 35 72 90 77 90 79 1 81 1
Column Temperature	50 °C

Table 1. LC conditions.

Results and discussion

Monitoring multiple PQAs in a single analysis

To evaluate the InfinityLab LC/MSD XT system for monitoring multiple attributes of biomolecules, NISTmAb was stressed under two conditions to induce deamidation and oxidation, respectively. The LC/MS method using MS positive scan mode described above was applied to collect the full peptide map for each sample. Figure 1 shows the total ion chromatogram of the peptide map data with 2.5 µg of NISTmAb digest loaded on-column, showing the sample complexity, as well as the high sensitivity and ultrafast scan speeds of the MSD within the InfinityLab LC/MSD XT system. The full scan of the NISTmAb peptide map allows monitoring of multiple attributes of interest using customized data processing methods. The scan also avoids re-acquiring data if additional attributes are of interest in the future

Table 2. MS conditions.

	Agilent MSD XT Parameters
Drying Gas Flow	11 L/min
Drying Gas Temperature	325 °C
Sheath Gas Flow	10 L/min
Sheath Gas Temperature	325 °C
Nebulizer Pressure	35 psi
Capillary Voltage	4,000 V
Nozzle Voltage	0 V
Peak Width	0.07 minutes
Scan	360 to 1,400 m/z in positive mode from 5 to 80 minutes, step size 0.1
Fragmentor Ramp	Mass Value 300 125 V 2,000 200 V
Cycle Time	0.62 sec/cycle

Figure 1. Total ion chromatogram of peptide map detection by Agilent LC/MSD XT with positive scan.

OpenLab ChemStation software supports automated data processing and reporting. To avoid manual extraction and integration of each peptide, a processing method can be created for extracted ion chromatograms (EICs) of multiple peptides of interest. Figure 2 shows screen captures of the EIC method setup for multiple peptides by the following steps:

Α

- MS chromatograms for the peptides of interest are defined with targeted *m/z*, then the targeted MS chromatograms are extracted accordingly (Figure 2A).
- 2. These targeted EICs are added to the processing method with adjustable retention time windows for automatic signal extraction and loading (Figure 2B).
- 3. The compound names, associated retention times, and EIC signals are linked through the Calibration Table setup (Figure 2C).

Extract lons: test1			×										
Select Data File:													
2019-03-19-pep-map_002_005	5-D1F-F3-Nist-	mAb-deami	d-0-day.D Browse										
Extracted Ion Table													
Enter ions to be extracted. A : range using Ion1 and Ion2.	single ion may	be specifie	ed in column Ion1, or a	В									
Add Ions from Signal Det	tails Ir	isert /	Signal Details: test1										×
Signal Io	on 1 I	on 2	Available Signals										
MSD1 1272, EIC=12 12	272.6		MSD1 TIC MS File Pos S	ican Frag: VAB "bos scan"	~	Add to Meth	od	С					
MSD1 1273, EIC=12 12	273.1		11001110,110110,100,0	ioan, mag. min, pooloan		ridd to moth							
MSD1 925, EIC=924 92	24.9						l ⊫1 c	alibration Tak	de				
MSD1 933, EIC=932 93	32.9								/ic				
MSD1 1040, EIC=10 10	39.2 1	040.5	Insert Row Appe	end Row Delete Row				Enter D	elete 1	Insert	Print	OK	Help
MCD1 1149 ETC-11 11	47.2 1	1/10 E						4 рт	From	То	Cinnal	Compour	d
M3D11140, LIC-11 11		110.0	Fignal Description		Etaut	End		# NI	TIVIII	10	Signal	Compoun	u
MSD1 1094, EIC=10 10	93.2 1	094.5	Signal Description	2,1072 2	Start	End		1 7.942	7.744	8.141	MSD1 1148	H300-G2F	<u> </u>
MSD1 1146, EIC=11 11 MSD1 1094, EIC=10 10 MSD1 426, EIC=425 42	093.2 1 26	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.8	3:1273.3	Start 38.000	End 41.000		1 7.942 2 7.945	7.744	8.141 8.144	MSD1 1148 MSD1 1094	H300-G2F H300-G1F	
MSD1 1145, EIC=11 11 MSD1 1094, EIC=10 10 MSD1 426, EIC=425 42 MSD1 632, EIC=631 63	093.2 1 26 31.4	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.8 MSD1 925 EIC=924.6.9	3:1273.3 3:1273.8	Start 38.000 38.000 18.300	End 41.000 41.000 20.300		1 7.942 2 7.945 3 7.955	7.744 7.746 7.756	8.141 8.144 8.154	MSD1 1148 MSD1 1094 MSD1 1040	H300-G2F H300-G1F H300-G0F	
MSD1 1196, EIC=11 11 MSD1 1094, EIC=10 10 MSD1 426, EIC=425 42 MSD1 632, EIC=631 63 MSD1 637, EIC=636 63	193.2 1 26 31.4 36.8	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.8 MSD1 925, EIC=924.6:9 MSD1 933, EIC=932.6:9	3:1273.3 3:1273.8 125.6 123.6	Start 38.000 38.000 18.300 12.700	End 41.000 41.000 20.300 14 700		# R1 1 7.942 2 7.945 3 7.955 4 8.590	7.744 7.746 7.756 8.375	8.141 8.144 8.154 8.805	MSD1 1148 MSD1 1094 MSD1 1040 MSD1 394	H300-G2F H300-G1F H300-G0F L53	
MSD1 1094, EIC=10 10 MSD1 1094, EIC=10 10 MSD1 426, EIC=425 42 MSD1 632, EIC=631 63 MSD1 637, EIC=636 63 MSD1 418, EIC=417 41	093.2 1/ 26 31.4 36.8 18	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.8 MSD1 925, EIC=924.6:9 MSD1 933, EIC=932.6:9 MSD1 1040, EIC=1032.2	3:1273.3 3:1273.8 925.6 933.6 2:1040.5	Start 38.000 38.000 18.300 12.700 7.000	End 41.000 20.300 14.700 9.000		# R 1 7.942 2 7.945 3 7.955 4 8.590 5 8.876	7.744 7.746 7.756 8.375 8.654	8.141 8.144 8.154 8.805 9.098	MSD1 1148 MSD1 1094 MSD1 1040 MSD1 394 MSD1 541	H300-G2F H300-G1F H300-G0F L53 L19	
MSD11196, EC=1111 MSD11094, EC=1110 MSD1426, EC=42542 MSD1632, EC=63163 MSD1637, EC=63663 MSD1418, EC=41741 MSD1541, ELC=54054	193.2 1 26 31.4 36.8 18 41.1	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.8 MSD1 925, EIC=924.6:9 MSD1 933, EIC=932.6:9 MSD1 1040, EIC=1039.2 MSD1 1148, EIC=1147.2	3:1273.3 3:1273.8 225.6 333.6 2:1040.5 2:1148.5	Start 38.000 38.000 18.300 12.700 7.000	End 41.000 20.300 14.700 9.000 9.000		# R 1 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961	7.744 7.746 7.756 8.375 8.654 10.687	8.141 8.144 8.154 8.805 9.098 11.235	MSD1 1148 MSD1 1094 MSD1 1040 MSD1 394 MSD1 541 MSD1 426	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidi	zed
MSD11094, EIC=11 11 MSD11094, EIC=12 12 MSD1426, EIC=422 42 MSD1632, EIC=631 63 MSD1418, EIC=417 41 MSD1541, EIC=545 54 MSD11234, EIC=12 12	1 1 1093.2 11 26 11 36.8 11 18 11 12.3 12	094.5	Signal Description MSD1 1272, EIC=1272.3 MSD1 1273, EIC=1272.6 MSD1 933, EIC=1272.6 MSD1 933, EIC=932.6:9 MSD1 1040, EIC=1039.7 MSD1 11049, EIC=1193.7	3:1273.3 3:1273.8 225.6 2:1040.5 2:1140.5 2:1148.5 2:1094.5	Start 38.000 38.000 18.300 12.700 7.000 7.000 7.000	End 41.000 20.300 14.700 9.000 9.000 9.000		# Ki 1 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625	7.744 7.746 7.756 8.375 8.654 10.687 13.284	8.141 8.144 8.154 8.805 9.098 11.235 13.966	MSD1 1148 MSD1 1094 MSD1 1094 MSD1 1040 MSD1 394 MSD1 541 MSD1 426 MSD1 418	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidi: H255-WT	zed
MSD1 1193, EC=11 MSD1 1094, EC=11 MSD1 1094, EC=12 MSD1 426, EIC=425 MSD1 637, EIC=636 MSD1 418, EIC=417 MSD1 541, EIC=546 MSD1 1234, EIC=12	1093.2 1 26 1 31.4 1 36.8 1 18 1 11.1 1 234.3 1	094.5	Signal Description MSD 1 1272, EIC=1272. MSD 1 1273, EIC=1272. MSD 1 925, EIC=924.6:9 MSD 1 940, EIC=923.6:9 MSD 1 1040, EIC=1039.2 MSD 1 1148, EIC=1147.2 MSD 1 1094, EIC=1039.2 MSD 1 1094, EIC=1039.2	3:1273.3 3:1273.8 125.6 233.6 2:1040.5 2:1148.5 2:1054.5 2:1054.5	Start 38.000 38.000 18.300 12.700 7.000 7.000 7.000 10.000 10.000	End 41.000 20.300 14.700 9.000 9.000 9.000 12.000		# R 1 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981	MSD1 1148 MSD1 1094 MSD1 1094 MSD1 394 MSD1 394 MSD1 541 MSD1 426 MSD1 418 MSD1 933	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidiz H255-WT H87-Oxidize	zed
MSD1 1190, EC=11 11 MSD1 1090, EC=11 10 MSD1 426, EIC=425 42 MSD1 632, EIC=631 63 MSD1 637, EIC=636 63 MSD1 418, EIC=417 41 MSD1 418, EIC=417 41 MSD1 1234, EIC=12 12	1093.2 1 1993.2 1 26 3 31.4 3 36.8 8 41.1 2 34.3 3	094.5	Signal Description MSD 1 1272, EIC=1272. MSD 1 1273, EIC=1272. MSD 1 925, EIC=924.6:9 MSD 1 933, EIC=932.6:9 MSD 1 1040, EIC=1039.2 MSD 1 1148, EIC=1147.2 MSD 1 1094, EIC=1093.2 MSD 1 225, EIC=425.7:4 MSD 1 632, EIC=431.1:6	3:1273.3 3:1273.8 125.6 2:1040.5 2:1040.5 2:1094.5 126.7 32.1	Start 38.000 38.000 18.300 12.700 7.000 7.000 7.000 10.000 21.700	End 41.000 20.300 14.700 9.000 9.000 9.000 12.000 23.700		# Ki 1 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613	MSD1 1148 MSD1 1094 MSD1 1094 MSD1 394 MSD1 541 MSD1 426 MSD1 418 MSD1 418 MSD1 933 MSD1 637	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidiz H255-WT H87-Oxidized L4-Oxidized	zed
MSD11196, EC=1111 MSD11094, EC=1110 MSD11094, EC=1212 MSD1632, EC=63163 MSD1637, EC=633 MSD1637, EC=643 MSD1418, EC=4217 MSD1541, EIC=540 MSD11234, EIC=12 Time Window	1093.2 11 1993.2 11 26 31.4 10 66.8 18 11.1 12 134.3 10	094.5	Signal Description MSD 1272, EIC=1272.3 MSD 1273, EIC=1272.4 MSD 1925, EIC=924.6:9 MSD 1933, EIC=932.6:9 MSD 1040, EIC=1932.2 MSD 1040, EIC=1033.2 MSD 1094, EIC=1033.2 MSD 1034, EIC=451.7:4 MSD 1637, EIC=636.5:6	3:1273.3 3:1273.8 225.6 333.6 2:1040.5 2:1148.5 2:1094.5 126.7 132.1 137.5	Start 38.000 38.000 38.000 18.300 12.700 7.000 7.000 7.000 7.000 10.000 21.700 11.700 11.700	End 41.000 20.300 14.700 9.000 9.000 9.000 12.000 23.700 17.240		ft 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802 18.749	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613 19.711	MSD1 1148 MSD1 1094 MSD1 1094 MSD1 394 MSD1 394 MSD1 426 MSD1 418 MSD1 418 MSD1 933 MSD1 637 MSD1 625	H300-G2F H300-G1F H300-G1F L53 L19 H255-Oxidiz H255-WT H87-Oxidize H87-Oxidize H87-WT	zed
HSD11193, EC=11 MSD11034, EC=11 MSD11034, EC=12 MSD1426, EIC=425 MSD1637, EIC=636 MSD131, EIC=546 MSD1541, EIC=546 MSD11234, EIC=12 Time Window	1093.2 1 1993.2 1 26 31.4 36.8 18 11.1 134.3 :	094.5	Signal Description MSD 1 1272, EIC=1272. MSD 1 1273, EIC=1272. MSD 1 925, EIC=924.6:9 MSD 1 940, EIC=923.6:9 MSD 1 1040, EIC=1039.2 MSD 1 1148, EIC=1147.2 MSD 1 1094, EIC=1425.7:4 MSD 1 632, EIC=631.1:6 MSD 1 637, EIC=635.5:6	3: 1273.3 3: 1273.8 125.6 133.6 2: 1040.5 2: 1148.5 2: 1044.5 126.7 132.1 137.5 10.5	Start 38.000 38.000 18.300 12.700 7.000 7.000 7.000 21.700 10.000 15.240 15.240	End 41.000 41.000 20.300 14.700 9.000 9.000 9.000 12.000 12.000 23.700 17.240		T 7.942 1 7.945 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230 11 22.627	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802 18.749 22.061	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613 19.711 23.193	MSD1 1148 MSD1 1094 MSD1 1094 MSD1 1040 MSD1 394 MSD1 541 MSD1 426 MSD1 418 MSD1 933 MSD1 637 MSD1 925 MSD1 632	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidiz H255-WT H87-Oxidize H87-Oxidize H87-WT L4-WT	zed ed
HSD11193, EC=111 MSD11034, EC=111 MSD11034, EC=121 MSD1426, EIC=42542 MSD1637, EIC=631633 MSD1637, EIC=631633 MSD1438, EIC=41741 MSD1541, EIC=54054 MSD11234, EIC=1212 Time Window Use Window	1993.2 1) 1993.2 1) 26 31.4 3 36.8 4 41.1 3 234.3 1 : [094.5	Signal Description MSD 1 1272, EIC=1272. MSD 1 1273, EIC=1272. MSD 1 925, EIC=924.6:9 MSD 1 933, EIC=932.6:9 MSD 1 140, EIC=1039.2 MSD 1 148, EIC=1147.2 MSD 1 1094, EIC=1093.2 MSD 1 426, EIC=425.7:4 MSD 1 632, EIC=631.1:6 MSD 1 637, EIC=636.5:6	3:1273.3 3:1273.8 125.6 133.6 2:1040.5 2:1049.5 2:1049.5 2:1094.5 12:1049.5	Start 38.000 38.000 18.300 12.700 7.000 7.000 7.000 10.000 21.700 15.240 4	End 41.000 41.000 20.300 14.700 9.000 9.000 9.000 12.000 23.700 17.240		T. 7.942 1 7.945 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230 11 22.627 12 39.044	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802 18.749 22.061 38.850	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613 19.711 23.193 39.250	Signal MSD1 1148 MSD1 1094 MSD1 1040 MSD1 394 MSD1 541 MSD1 426 MSD1 933 MSD1 637 MSD1 637 MSD1 632 MSD1 632	H300-G2F H300-G1F H300-G1F L53 L19 H255-Oxidi H255-WT H87-Oxidized H87-Oxidized H87-WT L4-WT H387-D1	zed ed
HSD11193, EC=1111 MSD11094, EC=1110 MSD11094, EC=1212 MSD1426, EC=42542 MSD1632, EC=63163 MSD1637, EC=63163 MSD11418, EC=41241 MSD1418, EC=41241 MSD11234, EIC=1212 Time Window	193.2 1 26 1 31.4 1 56.8 1 8 1 41.1 1 234.3 1 : [094.5	Signal Description MSD11272, EIC=1272.3 MSD11273, EIC=1272.8 MSD1925, EIC=924.6:9 MSD1933, EIC=932.6:9 MSD11049, EIC=1147.2 MSD11148, EIC=1147.2 MSD1126, EIC=425.7:4 MSD1637, EIC=636.5:6	3:1273.3 3:1273.8 125.6 333.6 2:1040.5 2:1094.5 2:1094.5 126.7 332.1 337.5	Start 38.000 38.000 12.700 7.000 7.000 7.000 10.000 21.700 15.240 ↓	End 41.000 41.000 20.300 9.000 9.000 9.000 12.000 23.700 17.240		T. 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230 11 22.627 12 39.044 3 39.533	7,744 7,746 7,776 8,375 8,654 10,687 13,284 13,299 15,802 18,749 22,061 38,850 39,330	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.961 13.961 13.911 23.193 39.250 39.750	Signal MSD1 1148 MSD1 1094 MSD1 1040 MSD1 541 MSD1 426 MSD1 418 MSD1 637 MSD1 637 MSD1 1273 MSD1 1277	H300-G2F H300-G2F H300-G0F L53 L19 H255-Oxidiz H255-Oxidiz H255-WT H87-Oxidize H87-WT L4-WT H387-D1 H387-WT	zed ed
HSD11193, EC=11 MSD11094, EC=11 MSD1191, EC=11 MSD1426, EIC=4254 MSD1637, EIC=63663 MSD137, EIC=63663 MSD1418, EIC=41741 MSD1541, EIC=54654 MSD11234, EIC=1212 Time Window Use Window	193.2 1) 26 1) 31.4 1) 66.8 18 41.1 234.3 1) 234.3 1) 18	176.3 094.5	Signal Description MSD11272, EIC=1272.3 MSD11273, EIC=1272.4 MSD1925, EIC=924.6:9 MSD1933, EIC=932.6:9 MSD11040, EIC=1932.2 MSD11040, EIC=1033.2 MSD11044, EIC=1033.2 MSD11044, EIC=1033.2 MSD1426, EIC=431.1:6 MSD1632, EIC=631.1:6 MSD1637, EIC=635.5:6	3:1273.3 3:1273.8 225.6 33.6 2:1040.5 2:1148.5 2:1094.5 2:1094.5 126.7 332.1 337.5 	Start 38.000 38.000 18.300 12.700 7.000 7.000 10.000 21.700 15.240	End 41.000 41.000 20.300 14.700 9.000 9.000 9.000 12.000 23.700 17.240		T. 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230 11 22.627 12 39.044 13 39.533 14 40.059	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802 18.749 22.061 38.850 39.330 39.850	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613 19.711 23.193 39.250 39.750	Signal MSD1 1148 MSD1 1040 MSD1 394 MSD1 541 MSD1 426 MSD1 393 MSD1 637 MSD1 632 MSD1 1273 MSD1 1272	H300-G2F H300-G1F H300-G0F L53 L19 H255-Oxidiz H87-Oxidize H87-Oxidize H87-WT L4-WT L4-WT H387-D1 H387-WT H387-D2	zed ed j
HSD11193, EC=11 MSD11094, EC=11 MSD11094, EC=11 MSD1426, EIC=425 MSD1632, EIC=636 MSD1418, EIC=417 MSD1541, EIC=546 MSD11234, EIC=12 Time Window Use Window	193.2 1 26 1 31.4 2 66.8 1 8 1 11.1 2 234.3 1 : [178.3 094.5	Signal Description MSD 1 1272, EIC=1272.3 MSD 1 1273, EIC=1272.8 MSD 1 925, EIC=924.6:9 MSD 1 933, EIC=932.6:9 MSD 1 1040, EIC=1039.2 MSD 1 1148, EIC=1147.2 MSD 1 1094, EIC=1039.2 MSD 1 1094, EIC=1039.2 MSD 1 1094, EIC=635.2 MSD 1 637, EIC=636.5:6	3:1273.3 3:1273.8 125.6 2:1040.5 2:1148.5 2:1094.5 2:1094.5 2:1094.5 3:2.104.5 3:2.1 3:7.5 3:2.1	Start 38.000 18.300 12.700 7.000 7.000 10.000 21.700 15.240 ↓	End 41.000 41.000 20.300 14.700 9.000 9.000 12.000 23.700 17.240 Cancel		T 7.942 2 7.945 3 7.955 4 8.590 5 8.876 6 10.961 7 13.625 8 13.640 9 16.208 10 19.230 11 22.627 12 39.533 14 40.059 15 62.153	7.744 7.746 7.756 8.375 8.654 10.687 13.284 13.299 15.802 18.749 22.061 38.850 39.330 39.830	8.141 8.144 8.154 8.805 9.098 11.235 13.966 13.981 16.613 19.711 23.193 39.250 39.750 40.600 63.707	Signal MSD1 1148 MSD1 1040 MSD1 394 MSD1 426 MSD1 426 MSD1 426 MSD1 426 MSD1 426 MSD1 637 MSD1 637 MSD1 632 MSD1 1273 MSD1 1272 MSD1 1234	H300-G2F H300-G2F H300-G0F L53 L19 H255-Oxidi H255-WT H87-Oxidized H87-Oxidized H87-WT L4-WT H387-D1 H387-D2 H6	zed i

Figure 2. ChemStation screen captures of EIC method setup for multiple peptide attributes.

EICs for monitoring product attributes

To evaluate the performance using the InfinityLab LC/MSD XT, 15 precharacterized peptides were selected for identification and quantification analysis for the NISTmAb stress study (Table 3).^{4,5} The identity and retention time of these peptides was predetermined using a high-resolution LC/Q-TOF system with the same LC gradient as in Table 1. A processing method, including all 15 peptides, was created using the steps described earlier, and a single dominant charge state was used to identify each of the peptides. If desired, the user could sum up additional charge states for each peptide.

The peptides listed in Table 3 can be separated into three categories according to the different monitoring purposes. The first category is the CDR peptides including peptides L4, L19, L53, H6, and H87. During product monitoring, an important need is to confirm the identity of a given biomolecule product. The sequences of CDR peptides are variable among different mAbs and can be used to confirm the product identity. Figure 3 shows the EIC of the CDR peptides that can be used to confirm protein identity.

Table 3. Peptide information	for monitored attributes.
------------------------------	---------------------------

Peptide	Peptide sequence	Modification	Calculated <i>m/z</i>	Charge state (z)	Expected retention time (min)	mAb region
L4	DIQMTQSPSTLSASVGDR	Oxidation	637.0	3	16.24	CDR
L4	DIQMTQSPSTLSASVGDR	WT	631.6	3	22.68	CDR
L19	VTITCSASSR	WT	541.3	2	8.966	CDR
L53	LASGVPSR	WT	393.7	2	8.353	CDR
H6	ESGPALVKPTQTLTLTCTFSGFSLSTAGMSVGWIR	WT	1234.3	3	62.105	CDR
H87	VTNMDPADTATYYCAR	WT	924.9	2	13.64	CDR
H87	VTNMDPADTATYYCAR	Oxidation	932.9	2	19.23	CDR
H255	DTLMISR	Oxidation	426.2	2	11.01	CH2
H255	DTLMISR	WT	418.2	2	13.71	CH2
H300	TKPREEQYNSTYR	G0F	1039.5	3	7.97	CH2
H300	TKPREEQYNSTYR	G1F	1093.5	3	7.97	CH2
H300	TKPREEQYNSTYR	G2F	1147.5	3	7.98	CH2
H387	GFYPSDIAVEWESNGQPENNYK	Deamidation	1273.1	2	39.07	СНЗ
H387	GFYPSDIAVEWESNGQPENNYK	WT	1272.6	2	39.56	СНЗ
H387	GFYPSDIAVEWESNGQPENNYK	Deamidation	1273.1	2	40.06	СНЗ

Figure 3. EICs of the CDR peptides.

The second category is peptides with variable modification sites, which are responsive for chemically induced deamidation and oxidation (L4, H87, H255, and H387).^{6,7} PTMs such as asparagine deamidation, aspartate

isomerization, and methionine oxidation lead to degradation products typical for recombinant antibodies. Process changes during manufacturing or storage conditions can affect the rate and extent of these modifications, which could potentially impact the stability and function of the protein drug. Therefore, these PTMs are closely monitored during process development and drug production. Figure 4A shows EICs of the wild type H387 peptide and its

Figure 4. EICs of the peptides with variable PTMs. A) EIC comparison of the WT and deamidated H387 peptides before and after deamidation stress induction. B) EIC comparison of the WT and oxidized H87 peptides before and after oxidation stress induction.

deamidation forms, which is also called the PENNY peptide, in the reference and deamidated samples. The deamidated forms of H387 are elevated after deamidation induction. Figure 4B shows the overlaid EICs of the wild type peptide and its oxidized form from peptide H87 in both NISTmAb reference and oxidized samples. As expected, the extent of oxidation of H87 peptide was increased after oxidation induction.

The third category is glycopeptide (H300). Relative abundance of each glycopeptide can provide valuable information about the abundance of protein glycoforms. According to a previous publication on glycoanalysis in the NISTmAb tryptic digest using high-resolution LC/MS/MS, the glycopeptide located at heavy chain 292-304 (TKPREEQYNSTYR) was chosen as the dominant tryptic form⁵. Figure 5 shows the overlaid EICs of three glycopeptides (G0F, G1F, and G2F) used for determining their relative abundance. This result is consistent with a previous report on the relative abundance of these NISTmAb glycopeptides obtained using high-resolution LC/MS/MS.⁵

Intelligent reporting

OpenLab ChemStation software enables automated intelligent reporting. Intelligent reporting provides superior flexibility and allows the user to customize their report templates as desired. Figures 6A and 6B show examples of intelligent reports generated for monitoring multiple attributes.

Figure 5. EICs of the three glycopeptides for determining relative abundance.

Single Injec	tion Report				
olligie liljee	aon report			*	Agi
ata file: ample name: escription:					
sample amount.					
Instrument: Injection date: Acq. method: Analysis method:			Location: Injection: Injection volume: Acq. operator:		
			Analyst:		
			Date:		
			Pass/Fail:		
Peak Summary Tat	ole: Glycopeptide	es			
lame	RT [min]	Area	Area Percent		
1300-G0F	7.955	1207180	46.70%		
H300-G1F	7.945	1157171	44.77%		
H300-G2F	7.942	220399	8.53%		
	AreaSum	2584749			
Peak Summary Ta	ble: Deamidatio	n			
lame	RT [min]	Area	Area Percent	P/F	
H387-D1	39.112	146688	2.86%	Pass	
1387-WT	39.592	4914364	95.93%	Pass	
1387-D2	40.123	61809	1.21%	Pass	
	AreaSum	5122861			
Peak Summary Ta	ble: Oxidation				
Name	RT [min]	Area	Area Percent	P/F	
H87-Oxidized	13.811	113448	3.47%	Pass	
187-WT	19.367	3160505	96.53%	Pass	
	AreaSum	3273952			
Name	RT [min]	Area	Area Percent	P/F	
4-Oxidized	16.208	105370	9.00%	Pass	
L4-WT	22.627	1065867	91.00%	Pass	
	AreaSum	1171237			
Name	RT [min]	Area	Area Percent	P/F	

 AreaSum
 11706026

 Figure 6A
 Intelligent reporting by Agilent OpenLab ChemStation, Example of a single injection report. Posk tables summarize

16.80%

83.20%

Fail

Fail

1967116

9738910

10.961

13.625

Figure 6A. Intelligent reporting by Agilent OpenLab ChemStation. Example of a single injection report. Peak tables summarize the relative abundance of WT and PTM forms for each peptide sequence by custom calculation.

H255-Oxidized

H255-WT

Figure 6B. Intelligent reporting by Agilent OpenLab ChemStation. Example of a sequence summary report comparing a NISTmAb reference sample, deamidated sample, and oxidized sample for the EIC and retention time of H387 peptide.

Conclusion

The Agilent InfinityLab LC/MSD XT system provides a simple and cost-effective solution for monitoring multiple PQAs in a development and quality control environment, assuming those attributes that have been precharacterized using a high-resolution MS instrument. This Application Note demonstrates that the InfinityLab LC/MSD XT system can deliver quantitative analysis for monitoring multiple attributes of biotherapeutics at the peptide level, including CDR peptides, oxidized and deamidated peptides, and glycopeptides in a single analysis. Automated data processing and reporting through Agilent OpenLab ChemStation software avoid manual interrogation and allow high-throughput analysis. OpenLab ChemStation in combination with central data storage provides a compliance solution for chromatography and mass spectrometry data collected in compliant environments.

References

- 1. OpenLab CDS ChemStation Edition with Content Management Systems User's Guide. *Agilent Technologies*, publication number M8301-90089 Rev.B.
- OpenLab CDS ChemStation Edition C.01.09, Guide for Administrators. Agilent Technologies, publication number M8305-90019 Rev. B.
- 3. Automation of Sample Preparation for Accurate and Scalable Quantification and Characterization of Biotherapeutic Proteins Using the Agilent AssayMAP Bravo Platform. *Agilent Technologies*, publication number 5991-4872EN.
- Dong, Q.; et al. The NISTmAb Tryptic Peptide Spectral Library for Monoclonal Antibody Characterization. MAbs 2018, 10(3), 354–369.

- Dong, Q.; et al. In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC-MS/MS. J. Proteome Res. 2016, 15(5), 1472–1486.
- Quantitation of Chemical-Induced Deamidation and Oxidation on Monoclonal Antibodies Using Agilent 6545XT AdvanceBio LC/Q-TOF and Agilent MassHunter BioConfirm Software. Agilent Technologies, publication number 5994-0406EN.
- Haberger, M.; et al. Assessment of Chemical Modifications of Sites in the CDRs of Recombinant Antibodies: Susceptibility versus Functionality of Critical Quality Attributes. MAbs 2014, 6(2), 327–339.

www.agilent.com/chem

For Research Use Only. Not for use in diagnostic procedures.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Printed in the USA, June 26, 2019 5994-0990EN

